A New Way To Fly

Seymourpowell's Aircruise vertical airship

Leading design and innovation company Seymourpowell has unveiled full details of its visionary transportation concept, Aircruise – a giant, vertical airship powered by natural energy and designed to carry travelers in style and luxury.

Originally a self-generated project, Seymourpowell’s Aircruise is the concept design for a hotel in the sky, with low passenger numbers and huge internal spaces offering room for living, dining and relaxing, as well as scope for dramatic and inspirational public spaces. The initial design proposes a bar/lounge zone, four duplex apartments, a penthouse and five smaller apartments.

The concept subsequently captured the imagination of Korean giant Samsung Construction and Trading. Driven by its interest in new materials for building, Samsung C&T appointed Seymourpowell to refine the idea and produce a detailed computer animation of the proposed experience to illustrate this visionary approach to the future.

Seymourpowell’s Aircruise concept presents an alternative take on the future, suggesting ‘slow is the new fast’. Nick Talbot, design director at Seymourpowell explains, “The Aircruise concept questions whether the future of luxury travel should be based around space-constrained, resource hungry, and all too often stressful airline travel. A more serene transport experience will appeal to people looking for a more reflective journey, where the experience of travel itself is more important than getting from A to B quickly.”

On Aircruise, it is the very abundance of time and space that defines the luxury experience. In a world where speed is an almost universal obsession, the idea of making a leisurely journey in comfort is a welcome contrast. Talbot explains, “The physics of the airship requires a gigantic volume of lifting gas, yet simultaneously demands a relatively limited amount of weight. This allows for a potentially large amount of space with relatively few people onboard – a luxury for any traveller.”

Talbot added, “It’s a world cruise not limited to the ocean, offering instead the dream-like quality and absolute freedom of flight. Passengers can choose to dine thousands of feet above a city, or take in the view whilst moving through the air over the ocean or a national landmark.”

Lifted by hydrogen and powered by solar energy, the Aircruise concept also has obvious environmental benefits. Seung Min Kim, design director at Samsung C&T commented, “This was a dream concept project for us, helping to realize a future of sustainable buildings combined with innovative and luxury lifestyle. In an age when environmental impact is a key consideration for architecture, we are keen to extend this vision of the future by searching for solutions that can be realized by 2015 – the year that many futurologists foresee as the turning point for the future.”

Although only a conceptual proposal, the transportation design team at Seymourpowell developed a detailed and achievable technical specification for the craft.

From the docking rig at the base to the tip, the ship is 265 meters tall. Hydrogen, the lightest gas, is used as the lifting gas, and is capable of lifting around 1.2Kg per cubic meter of volume. Large PEM hydrogen fuel cells will provide on board power and some drinking water.

Seymourpowell's Aircruise vertical airship

The volume of the main envelope in the ship is calculated at 330,000 cubic metes, which equals 396,000 Kg of available lift at sea level (1,000Kg = 1 Ton.)

Part of the renewed interest in airships derives from advances in materials, structures, stabilization, and clean propulsion technologies. Utilizing composite frames and fabrications, lightweight semi flexible structures can be built at large scales. Although large, this is nevertheless a semi rigid ship, the primary tensioned structure consisting of 8 vertical composite lattices supporting four main flexible envelopes, which contain 330,000 cubic meters of hydrogen gas. Lower decks are ‘hung’ off these primary supports.

Each of the 4 external envelopes contains modular self-sealing lifting bags, minimizing the incidence of bag rupture and ensuring safe flight even with a major external skin rupture.

Automatic stability thrusters and altitude control using automatic adjustment of the gas density ensures a smooth ride compared to previous airships. Although still susceptible to storms and very poor weather, advanced weather radar and weather prediction systems allow the ship to route around major problems.

Despite the perceived risks, hydrogen is used for its inherent lifting efficiency and as a power source. Flexible photovoltaic (solar panel) cells cover the upper part of the envelope, augmenting the primary power generation, in this case from fuel cells. Large surface area PEM fuel cells generate the primary power for on board systems and turn low speed compressors located in the mid section of the ship. This compressed gas is ducted to provide directional thrust and auto stabilization. Compressed hydrogen stored in parts of the main structure provides fuel for longer ranges and by venting to the envelope or re-compressing these volumes, altitude stability is achieved.

By combining the lifting gas and the fuel for thrust the overall weight of the ship can be minimized, whilst ensuring a silent, pollution free passage. Water vapor is harnessed to augment on board potable water.

The service ceiling is limited to 12,000 feet, given the attenuation of the atmosphere (the hotel is not pressurized) and the limits of gas expansion within the envelope. If however, there are specific locations of interest en route, the ship can drop down to within a few hundred feet of the ground.

Cruising speed without tail or headwind is 100 – 150 Km/hr. This equates to journey times that are appropriate to the cruise experience: London to New York in 37 hours; Los Angeles to Shanghai in 90 hours.

Six flight crew will include two flight engineers, and will fly the ship in shifts, given the likely cruise durations. 14 support staff will run the hotel experience for the guest passengers.